
→

Ubiquity: A Model Development
& Deployment Tool
Disseminate your models

John Harrold & Anson Abraham

ubiquity.tools

(Slide 1/124)

ubiquity

http://ubiquity.tools

→

Useful Links
Files and more information

Project page
ubiquity.tools

Forum/Mailing list
help.ubiquity.tools

Analysis template
template.ubiquity.tools

Presentation PDF
presentation.ubiquity.tools

Handout PDF (this file)

handout.ubiquity.tools

Workshop Files
workshop.ubiquity.tools

(Slide 2/124)

http://ubiquity.tools
http://help.ubiquity.tools
http://template.ubiquity.tools
http://presentation.ubiquity.tools
http://handout.ubiquity.tools
http://workshop.ubiquity.tools

→

Using These Slides

These slides are put together to act as both a tutorial and
descriptive documentation. An index of the more important
components can be found on Slide ??.

Directory names, system.txt snippets and examples, Matlab
commands and etc. are written using this font

Files for the examples and exercises discussed here are found in
their respective directories. These will be listed at the bottom of
slides when relevant.

A state is used to refer to a variable that is defined by a set of
differential equations. These are sometimes referred to as
compartments, but this can be a little misleading since many
different states can exist in the same physiological space.

(Slide 3/124)

→

Using These Slides
Alpha and Beta

This documentation attepts to provide access to as many features as possible,
while acknowleding that development is a continuous process. Certain features
may not be complete or lack extensive testing. To identify these features, alpha
and beta flags are placed at the bottom left of the relevant slides:

alph
a

This is a feature that is close to completion and it may not even
require much more to be considered "finished". It is provied for
two reasons: First it might be useful to users in the current state.
Second to find users who may be able to provide input and roudn
off the edges.

bet
a

This is a new feature that is complete and in working order to the
best of our knowledge, but because it is new results should be
scrutinized accordingly.

If you want to help progress the features marked alpha, or if you have any
problem with beta or any other features, feel free to post on the forum:
help.ubiquity.tools

(Slide 4/124)

http://help.ubiquity.tools

→

Overview
Ubiquity model development tools

Model Development
(Slide 6) #!

Matlab Workflow
(Slide 65) #!.m

(Slide 5/124)

Getting Started → Big picture and how it all fits together

Table of Contents: Ubiquity Language I
Getting Started

Big picture and how it all fits together
Brief guide to system.txt files

Constructing your system in system.txt
System parameters
Secondary parameters
Differential Equations
Process-centric description
Non-zero initial conditions
Bolus Inputs
Infusion Rates
Covariates
Generic vs. language specific functions
Timescales

Other aspects & and extensions

(Slide 6/124)

Getting Started → Big picture and how it all fits together

Table of Contents: Ubiquity Language II
Multiple parameterizations within the same file
Extending mathematical sets to the system.txt framework
Altering the structure and parameters within a simulation
Defining datasets, variance parameters, & IIV
Inter-Individual Variability
Shiny Model Interface

Software Targets
Matlab workflow
R workflow
Adapt
Berkeley-Madonna
mrgsolve
NONMEM

(Slide 7/124)

Getting Started → Big picture and how it all fits together

What is the role of a Modeller?
Interactions with experimentalists and other scientists

if(x){}
else{}

+

(Slide 8/124)

Getting Started → Big picture and how it all fits together

Improving Efficiency & Satisfaction

When it comes to modeling, what slows you down? What
limits your ability to accomplish your objectives?

1. Tedium — Beyond just typing out ODEs

2. Transferability — Sharing my work with other modelers

3. Accessibility — Engaging and involving other scientists

#!

(Slide 9/124)

Getting Started → Big picture and how it all fits together

Methodology
It’s not where you’re going but how you get there.

(Slide 10/124)

Getting Started → Brief guide to system.txt files

Quicklook

(Slide 11/124)

Getting Started → Brief guide to system.txt files

Quicklook: Important Files
template.ubiquity.tools

system_help.txt — Reference file intended to provide
documentation for the different aspects of this framework. If you
want to know how to do something, this is where you should look.

build_system.pl — Perl script used to convert a system.txt
file into the different targets used.

system_template.txt — Contains commented examples of all
the different system descriptors used here. Copy this file to
system.txt to start a new system from scratch.

system_help_reserved_words.txt — This file is generated
after the system has been built. It contains a list of reserved words
that should be avoided in terms of parameter and state names. The
build script should warn you if you are using any of these words.

(Slide 12/124)

http://template.ubiquity.tools

Getting Started → Brief guide to system.txt files

Quicklook: Parameters
Delimiters: <P>, <As>, & <Ad>

System parameters
name value lower upper units editable grouping
bound bound
<P> CL 1.0 eps inf L/hr yes System
<P> Vp 1.0 eps inf 1/hr yes System

Secondary Parameters (Static)
If we wanted to calculate the rate of elimination (kel) and half-life
(thalf) we would do it in the following way (order is important).
<As> kel = CL/Vp
<As> thalf = SIMINT_LOGN[2.0]/kel

Static secondary parameters can be defined
in terms of system or previously defined
static secondary parameters.

Secondary Parameters (Dynamic)
If you are modeling amount Ap and want to define concentration,
you can create a dynamic secondary parameter.

<Ad> Cp = Ap/Vp
Dynamic secondary parameters can be
defined in terms of system parameters,
static secondary parameters, or previously
defined dynamic secondary parameters.

(Slide 13/124)

Getting Started → Brief guide to system.txt files

Quicklook: System Components
Delimiters: <ODE:?>, <C>, <S:?> & <=?:?=>

(Slide 14/124)examples/system-tmdd.txt

TpCp CpTpCt

ksyn

kint

kpt

ktp

VpVt

kon

koff

kintkel

ODEs
<ODE:Ct > Cp*kpt*Vp/Vt - Ct*ktp
<ODE:Cp > -Cp*kpt + Ct*ktp*Vt/Vp - kel*Cp + koff*CpTp - kon*Cp*Tp
<ODE:Tp > + ksyn/Vp - kint*Tp + koff*CpTp - kon*Cp*Tp
<ODE:CpTp > - kint*CpTp - koff*CpTp + kon*Cp*Tp

Processes
Compartments
Ct; Vt; ktp <C> Cp; Vp; kpt
Equilibrium
Cp + Tp <=kon:koff=> CpTp

Target Turnover:
ksyn/Vp <S:Tp> kint*Tp

<S:Cp> kel*Cp
<S:CpTp> kint*CpTp

Getting Started → Brief guide to system.txt files

Quicklook: System Inputs
Delimiters: <B:?> & <R:?>
Information about system inputs is (dosing units, default values, etc) are specified
<B:?>, for bolus inputs and <R:?> for infusion rates.

Bolus Inputs
A row must be specified for default bolus times and one for each state to receive a
bolus. Values are specified in the units listed and the scale is a mathematical
expression that converts dosing in the specified units into the system units.
type state values scale units
<B:times>; [0]; 24; days
<B:events>; Cp; [10]; 70/V1; mpk
Infusion Rates
Rates are sepecified in pairs (times and levels) that are grouped together with a
rate name (myrate). This name is used in the ODEs. Levels represent the rate of
infusion which are held constant until the next time. The scale is used to scale
from the specified units into the system units.
name time/levels values scale units
<R:myrate>; times; [0 30]; 1/60; min
<R:myrate>; levels; [1 0]; 60; mg/min

(Slide 15/124)

Getting Started → Brief guide to system.txt files

Quicklook: Building the System
Stand Alone
The only requirement is that you have perl installed (no additional
modules). To build the system just run the script
build_system.pl, and look in transient/ for the outputs.

In Matlab
Matlab has a built in perl interpreter, and you can build the
system using build_system.m (notice the .m extension). After
building the system, you can then run the model either through the
GUI or as a script:
I Use model_gui to run the model interactively and

build_exe.m to create a stand alone executable.
I Copy the file transient/auto_simulation_driver.m to

the main directory in the template. This is an example with
the components you might want to change in order to run the
model from a script.

(Slide 16/124)

Constructing your system in system.txt →

system.txt
Basic Components

(Slide 17/124)

Constructing your system in system.txt → System parameters

System Parameters
<P>

System parameters are specified using the <P> identifier. This is followed
by seven different fields separated by spaces. Because spaces are used to
separate the fields, the fields may not contain spaces. The clearance
parameter would be defined in the following way:
name value lb ub units editable grouping
<P> CL 1.0 eps inf 1/hr yes System

The comments are used used to indicate what each field represents. The
first field is the parameter name followed by a nominal value. The
bounds of the parameters are then specified. In this case the lower bound
eps represents the smallest nonzero number and inf is positive infinity.
Basically saying the parameter has to have a positive value. To be
boundless the lower bound would be -inf.

The next three fields are used in the GUI. The units are obvious. The
editable field can be either yes to indicate that it is displayed in the GUI
and the user can change it, or no and the variable will be hidden and
fixed at the nominal value. The grouping (System above) is used to
group parameters in the GUI.

(Slide 18/124)

Constructing your system in system.txt → Secondary parameters

Secondary Parameters
<As> & <Ad>

While we can write everything in terms of system parameters, it’s convenient
to break things down into intermediate calculations or secondary parameters.
There are two different types of secondary parameters used here:
Static Secondary Param.
Parameter does not change during a
simulaiton. These are specified using
the <As> delimiter and can be
written in terms of system
parameters or previously defined
secondary parameters.

<As> kel = CL/Vp

Dynamic Secondary Param.
Parameter can change during a
simulation. This typically means it is
defined in terms of a state or
another dynamic secondary
parameter. The <Ad> descriptor is
used:

<Ad> Cp = Ap/Vp

Static secondary parameters can be used to define initial conditions
(Slide 25), and dynamic secondary parameters are used to create
piecewise-continuous variables (Slide 49). For both, the order of definition is
important.

(Slide 19/124)

Constructing your system in system.txt → Differential Equations

Differntial Equations
<ODE:?>

(Slide 20/124)

TpCp CpTpCt

ksyn

kint

kpt

ktp

VpVt

kon

koff

kintkel

With the TMDD system shown above, there are four different states:
The free drug in the tissue (Ct) and in the plasma (Cp) space; the free
target (Tp) and the drug/target complex (CpTp). The most
straight-forward way to describe this system is to write out the
differential equations using the <ODE:?> descriptor:
<ODE:Ct > Cp*kpt*Vp/Vt - Ct*ktp
<ODE:Cp > -Cp*kpt + Ct*ktp*Vt/Vp + koff*CpTp - kon*Cp*Tp
<ODE:Tp > + ksyn/Vp - kint*Tp + koff*CpTp - kon*Cp*Tp
<ODE:CpTp > - kint*CpTp - koff*CpTp + kon*Cp*Tp
<ODE:Cp > - kel*Cp

notice the multiple entries for Cp. These components are simply added
together internally.
Is this the simplest way to represent this system?

Constructing your system in system.txt → Process-centric description

Process-Centric Alternative
Beyond writing out ODEs

Consider systems where multiple species are in equilibrium
together–trimers and quadramers forming–writing out ODEs can
become tedious and error-prone. It may be desirable to represent
the system instead as a combination of the underlying processes
that are occurring. This framework provides the following
additional methods for creating a system:
I Chemical Reactions — notations for describing chemical

reactions as well as equilibria
I Turnover Processes — representing the rates of production

and consumption of a species
I Inter-Compartmental Movement — convenient methods for

describing movement of species between physiological
compartments

These components can be used together along with the
ODE descriptor to construct the full system

(Slide 21/124)

Constructing your system in system.txt → Process-centric description

Processes: Chemical Reactions
<=?:?=> or =?=>

(Slide 22/124)

TpCp CpTpCt

ksyn

kint

kpt

ktp

VpVt

kon

koff

kintkel

Chemical reactions can be specified using two different notations. Either
as an equilibrium reaction or forward reactions. The two are equilvalent
and can be used to represent the system above:

Equilibrium
Cp + Tp <=kon:koff=> CpTp

Reaction Rates
Cp + Tp =kon=> CpTp
CpTp =koff=> Cp + Tp

A couple things to note here. The on and off rates must have already
been defined as system or secondary parameters. Also Cp, Tp and
CpTp must be states and cannot be parameters.

examples/system-tmdd.txt

Constructing your system in system.txt → Process-centric description

Processes: Turnover
<S:?>

(Slide 23/124)

TpCp CpTpCt

ksyn

kint

kpt

ktp

VpVt

kon

koff

kintkel

The reaction rates can be used to understand conversion of one species
into another. The production and elimination of a species can be
specified using the <S:?> notation. The following are both equivalent:
Turnvoer
ksyn/Vp <S:Tp> kint*Tp

<S:Cp> kel*Cp
<S:CpTp> kint*CpTp

Turnover & ODEs
ksyn/Vp <S:Tp> kint*Tp
<ODE:Cp> - kel*Cp
<ODE:CpTp> - kint*CpTp

On the left side of the <S:Tp> rates of production of Tp are listed. And
the rates of elimination or consumption are listed on the right side.
Multiple rates can be listed and these are separated by semicolons (;).

examples/system-tmdd.txt

Constructing your system in system.txt → Process-centric description

Processes: Inter-Compartment Transport
<C>

(Slide 24/124)

TpCp CpTpCt

ksyn

kint

kpt

ktp

VpVt

kon

koff

kintkel

Movement between compartments contains three pieces of information
for each compartment: a state, the volume of the compartment, and
the rate of loss from the compartment. These are specified for this
system using the following syntax:
Ct; Vt; ktp <C> Cp; Vp; kpt

Note that Ct and Cp are states and the volumes (Vt & Vp) as well as
the rates (ktp & kpt) are parameters. This statement is expanded
internally to account for the movement between compartments. If the
states were amounts in stead of concentrations (e.g. At & Ap) then the
volumes would just be 1.0:
At; 1.0; ktp <C> Ap; 1.0; kpt

examples/system-tmdd.txt

Constructing your system in system.txt → Non-zero initial conditions

Other State Information
Initial Conditions: <I>It is not necessary to declare a state. This is done automatically when

one of the process descriptors (<ODE:?>, <=?:?=>, =?=>, <C>, or <S:?>)
are used. These different components are used to create the ODEs which
describe the system.

Any system of ODEs needs to have initial conditions defined. By default,
all states will have initial conditions = zero. It’s possible to specify
non-zero initial conditions using the <I> descriptor. General format is:

<I> state_name = state_IC
The initial conditions can be a number,
parameter, static secondary parameter or an
expression with any of these.

For the TMDD system shown on the previous slide, the initial condition
of the state Tp may be defined in terms of the synthesis and
internalization rate in the following way:
<P> ksyn 1.0 eps inf nmoles/hr yes System
<P> kint 1.0 eps inf 1/hr yes System
<P> Vp 1.0 eps inf L yes System
<As> Tp_IC = ksyn/Vp/kint
<I> Tp = Tp_IC

(Slide 25/124)

Constructing your system in system.txt → Bolus Inputs

Bolus Dosing
<B:?>

The <B:?> descriptor is used to define bolus events. These act as
default values in the GUI and as placeholders for scripts; both can
be altered by the user. Dosing informaiton is broken down into a
list of times that bolus events can occur and a list of events for
each compartment that will receive a bolus dose.

Each of these has a scale that is used to convert the bolus dosing
information from proscribed units (mg once daily) into the units in
which the system is coded (nM and hours). So if dosing is done on
days 0, 1, 2... but the simulation time is hours, then the scale for
the dosing times is 24.

The events contain the magnitude of the bolus at a given time. If
you have multiple states receiving a bolus, the times must include
all times in which a bolus may be applied to the system. If a state
does not receive a bolus on a particular time, it’s magnitude at
that time is 0.

(Slide 26/124)

Constructing your system in system.txt → Bolus Inputs

Bolus Dosing (Contd.)
A complete example

In this example we want to dose two
different drugs into two differnt states.
Drug 1 (D1) will be dosed into Cp1 and
drug 2 (D2) into Cp2. Dosing will be in
mg/kg but concentrations are in mg/ml.
The dosing time is in days, but the
simulation time units are hours. We will
be dosing D1 at 8 & 2 mpk on days 0 &
6. D2 will be dosed at 5 mpk on day 9.

D2

D1

5

2

8

0 6 9

Time (days)

D
o
s
e
 (

m
p

k
)

type state values scale units
<B:times>; [0 6 9]; 24; days
<B:events>; Cp1; [8 2 0]; 70/V1; mpk
<B:events>; Cp2; [0 0 5]; 70/V2; mpk

Assume V1 and V2 are the comparmental volumes for D1 and D2 in ml,
and the subject body weight is 70 kg.

(Slide 27/124)

Constructing your system in system.txt → Infusion Rates

Infusion Rates
<R:?>

Rates of infusion are defined using the <R:?> descriptor. Like bolus
values, infusion rates have two components. There is a component that
specifies switching times. And each switching time has a correspoinding
rate of infusion. This infusion rate will be held constant until the next
time. Also like the bolus specification there is a scale associated with
both infusion times and the levels that converts the proscriptive units
into the units of the simulation. Consider the following example:

name time/levels values scale units
<R:myrate>; times; [0 30]; 1/60; min
<R:myrate>; levels; [1 0]; 60; mg/min

These two entries create the infusion rate called myrate. This can be
used in any of your system specifications (e.g., <ODE:Cp> myrate/Vp).
The first row specifies the times when the rate is changed (0 and 30
minutes). If the system is coded in terms of hours, then the scale of 1/60
must be used. The levels indicate a rate of 1 mg/min that is switched off
at 30 minutes. This has to be converted to mg/hr using the scale of 60.

(Slide 28/124)

Constructing your system in system.txt → Covariates

Covariates
<CV:?> & <CVTYPE:?>
For simulation purposes covariates (normally found in a data set) need to be
defined. Covariates can be be either constant or change with time. The times
must be the same scale as the system. The following defines the value for the
covariate RACE:
<CV:RACE>; times; [0]; weeks
<CV:RACE>; values; [1]; race

Covariates can also change with time. In this case consider the subject weight
WGT. It begins at 70 and measurements are made at several time points.
<CV:WGT>; times; [0 10 20 30 60]; weeks
<CV:WGT>; values; [70 65 60 58 56]; kg

Next we can alter how the simulations will interpret these values. By setting the
type of covariate. By default the weight will be linearly interpolated (type =
’linear’), however we can hold the weight constant until the next measurement is
encountered by declaring the type as ’step’
<CVTYPE:WGT> step

Note the time units must be the same as the simulation time.
(Slide 29/124)

Constructing your system in system.txt → Covariates

Covariates and Parameter Sets
<CVSET:?:?> & <PSET:?:?>?

When a covariate has been defined, it will be associted with the default
parameter set and all other sets that have benen created. If you have created a
parameter set using the <PSET> notation, you can overwrite the value of a
covariate for that parameter set using the <CVSET> notation.

For example, if the model was parameterized for male and female subjects we can
define two parameter sets. Using the definintion of the WGT covariate to be
associated with males (default) parameter set. We can now create a new
parameter set (female):
<PSET:default> Male
<PSET:female> Female

And the default values for the covariate can be changed for the set ’female’:
<CVSET:female:WGT>; times; [0 10 30 50]
<CVSET:female:WGT>; values; [60 55 52 50]

(Slide 30/124)

Constructing your system in system.txt → Covariates

Complex Covariate Profiles

It is possible to create time varying
inputs using the <CV:?> notation.
For example the the input profile to
the right can be constructed using
the code below.

0

0 12

4
5
6
7
8

1 2 3 4 5

simtime

m
y
c
o
v

<CV:mycov> ; times; [0 .999 1 2 3 4 5 12 12.001]; hours
<CV:mycov> ; values; [0 0 8 7 6 5 4 4 0]; –
<CVTYPE:mycov> linear

(Slide 31/124)

Constructing your system in system.txt → Covariates

System Outputs
<O>

Outputs are defined here in terms of states, parameters, secondary
parameters, and input rates listed above. The format used is:
<O> name = expression
For example:

<O> A_obs = A
<O> Coverage = A/(KD + A)

Outputs that begin with QC will not be displayed in the GUI. This
is intended to make them available at the scripting level for quality
control (QC) purposes.

(Slide 32/124)

Constructing your system in system.txt → Generic vs. language specific functions

Operators & Functions
SIMINT_

Most of the standard operators behave as expected (+, -, *, & /)
because most languages use these consistently. There are however
certain operators and functions that differ between languages. For
example, consider the power function (ab). In FORTRAN this
would be a**b, in Matlab it is a^b, and in C it is pow(a,b).

Now given the objectives here (write once and create multiple
formats), this can be quite challenging. The solution used here is
to convert language specific functions and operators into generic
functions. So the power operator would be:

SIMINT_POWER[a][b]

This would then be converted to the appropriate output format
depending on the output target.

(Slide 33/124)

Constructing your system in system.txt → Generic vs. language specific functions

Operators & Functions

Operator/Function Example Format
power ab SIMINT_POWER[a][b]
exponential ea SIMINT_EXP[a]
log base 10 log(a) SIMINT_LOG10[a]
log base e ln(a) SIMINT_LOGN[a]
less than a < b SIMINT_LT[a][b]
less than or equal a ≤ b SIMINT_LE[a][b]
greater than a > b SIMINT_GT[a][b]
greater than or equal a ≥ b SIMINT_GE[a][b]
equal a == b SIMINT_EQ[a][b]
and a and b SIMINT_AND[a][b]
or a or b SIMINT_OR[a][b]

(Slide 34/124)

Constructing your system in system.txt → Timescales

Timescales
<TS:?>

Each system has default units in which it is constructed, and should be
indicated in the comments of the model. It can be useful (for generating
figures for example) to show simulations in different time scales. Now
this can be achieved by multiplying the time outputs by the correct
scaling factor. However this requires the end user to (1) remember the
original timescale and (2) correctly scale that value.

Now while this is not particularly challenging from a mathematical
perspective, it introduces a chance for error. It is possible, instead, to
specify time scale information using the <TS:?> descriptor. If the system
is coded in hours, the following will define timescales for the default
(hours), days, weeks and months:

<TS:hours> 1.0
<TS:days> 1.0/24.0
<TS:weeks> 1.0/24.0/7.0
<TS:months> 1.0/24.0/7.0/4.0

Here ? represents the name of the timescale
and the numeric expression is the scale that
converts the system time (hours) into the
specified timescale.

These are used both in the GUI (Slide 55) and at the command line in
Matlab (Slide 79) and Matlab (Slide ??)

(Slide 35/124)

Other aspects & and extensions →

Extended Features

(Slide 36/124)

Other aspects & and extensions → Multiple parameterizations within the same file

Parameter Sets
Describing multiple species, diseased/non-diseased, etc. <PSET:?:?>?

Often a model will be developed to incorporate different situations
or scenarios. For example, a model may be used to describe both
healthy and diseased individuals. When these differences are simply
parametric in nature, it can be cumbersome to code a model
multiple times (once for each parameterization). This framework
provides a mechanism for including multiple parameterizations
withing the same input file. Consider the system below where we
want to describe antibody disposition. For humans this is
described by a two compartment model, but for mice a single
compartment is needed.

Ct Cp Cp

Human Mouse

(Slide 37/124)

Other aspects & and extensions → Multiple parameterizations within the same file

Default Parameter Set
<PSET:default> default name

First we create a set of parameters describing the human scenario.
These are the mean parameters taken from the literature [DM]:
<P> Weight 70.0 eps inf kg yes System # Organism weight
<P> CL 0.0129 eps inf L/hr yes System # Systemic Clearance
<P> Q 0.0329 eps inf L/hr yes System # Inter - compartmental

clearance
<P> Vp 3.1 eps inf L yes System # Vol. central compartment
<P> Vt 2.8 eps inf L yes System # Vol. peripheral

compartment

When a parameter is created using the <P> descriptor it is part of
the default parameter set. This is the short name for a
parameter set. A longer more verbose name can be given as well,
and this is what will be seen in the GUI. The human parameter set
can be labeled using the PSET descriptor in the following way:

<PSET:default> mAb in Human

Where default is the parameter name, and “mAb in Human”is
the value shown to the user in the GUI.

(Slide 38/124)[DM] Dirks & Meibohm Clin. PK 2010 Oct 1;49(10):633-59

Other aspects & and extensions → Multiple parameterizations within the same file

Alternate Parameter Sets
<PSET:?:?>?

Next, to add the parameterization for mice we simply create a new
set in the following way:
<PSET:mouse> mAb in Mouse

This alone would create a new parameter set with a short name
mouse, and is an exact copy of the default parameter set. To
identify the parametric differences between the mouse and human
we use PSET in the following way:
<PSET: mouse :Weight > 0.020 # 20 gram mouse
<PSET: mouse :CL > 7.71e -6
<PSET: mouse :Q> 0.0
<PSET: mouse :Vp > 1.6e -3
<PSET: mouse :Vt > 1 # arbitrary

Consider the clearance parameter entry where we want the murine
half-life of an antibody [VR]:
<PSET:mouse:CL> 7.71e-6

We use the set name (mouse) and the parameter name (CL) and
then we overwrite the default with the specified value 7.71e-6.

(Slide 39/124)[VR] Vieira & Rajewsky Eur J Immunol. 1988 Feb;18(2):313-6

Other aspects & and extensions → Multiple parameterizations within the same file

Parameter Sets and Their Use
Implications for analysis

Target Formats
Once the system is built, it will create input files for many different
pieces of software. For target, an appropriate input fill will be
created for each parameter set. For Adapt a single FORTRAN
file is generated, but multiple prm files are created. In the previous
example, two Berkeley Madonna files will be created, and they are
distinguished by the short name for the parameter set:
I target_berkeley_madonna-default.txt
I target_berkeley_madonna-mouse.txt

Matlab GUI & Scripting
In the GUI, a pulldown menu above the parameters will allow the
user to select the active parameter set. The template also contains
scripts and functions for a Matlab workflow. This is described
more fully in that section (Slide 40).

(Slide 40/124)

Other aspects & and extensions → Extending mathematical sets to the system.txt framework

Repetitive & Combinatorial Systems
Defining the system with mathematical sets

Consider the following systems:

PBPK: Most of the organs in these systems are mathematically
identical, with only variations in the parameters. However coding each of
these organs or modifying an existing system (say to incorporate the
presences of a target in each organ) can become tedious.

Anti-drug antibody generation: If we consider ADAs generated in
response to therapeutic proteins, the response will consist of a
distribution of ADAs in terms of their concentration and a separate
distribution in terms of their affinity. Modeling this maturation process
and the interactions between the ADAs, the therapeutic protein, and
drug targets becomes unmanageable quite quickly.

The question is: How can we make difficult problems easy and
intractable problems possible? The solution implemented here allows the
system components to be defined in terms of mathematical sets.

(Slide 41/124)

Other aspects & and extensions → Extending mathematical sets to the system.txt framework

Assay Binding Model
<SET:?>?

Consider the interactions occurring in an assay designed to detect
drug (D) present in serum. In this assay a biotinylated target (TB)
is used to pull down the drug and a labeled target (TL) is the
signaling molecules used. The assay will provide a signal when a
complex containing both TB and TL are present (TB:D:TL or
TL:D:TB). Samples can contain target as well (TS) which can
interfere with the assay. To model this assay, the following
interactions should be considered:

DTB

Species

TL TS

D TiTi

+ Tk DTiTk Ti

General Interactions

+D Ti

D TiTi

(Slide 42/124)

Other aspects & and extensions → Extending mathematical sets to the system.txt framework

Creating Sets & Defining Initial Conditions
Basic components of mathematical sets

Several options are available to construct the system in the previous slide.
The ODEs could simply be typed out for every possible combination. It’s
also possible to use the equilibrium <=kon:koff=> for all the interactions
as well. However, there is another option that will handle the
enumeration more easily. First we define the two mathematical sets TSi
and TSk:

<SET:TSi> TL; TB; TS
<SET:TSk> TL; TB; TS

With these defined we can then use the
curly brace notation ({ }) with any of the
descriptors used to construct a system.

For example, the initial conditions for each of the target states are
defined as parameters (T0_TL, T0_TS, T0_TB) in the model. These have
to be identified as initial conditions using the <I> notation, and can be
done with a single statement:

This line: Expands to:

<I> {TSi} = T0_{TSi} ⇒ <I> TL = T0_TL
<I> TB = T0_TB
<I> TS = T0_TS

(Slide 43/124)examples/system-sets.txt

Other aspects & and extensions → Extending mathematical sets to the system.txt framework

Defining Species Interactions
Combinatorial enumeration

Similar to the initial condition, the equlibrium between the
monomeric drug and the different targets can be defined using a
single statement:

D + {TSi} <=kon:koff=> D_{TSi}

That uses only one of the sets (TSi), and will be expanded for
each element in that set. To account for the formation of
complexes that contain a drug molecule and two different target
molecules, the following statement is used:

D_{TSi} + {TSk} <=kon:koff=> {TSk}_D_{TSi}

This statement contains two different sets (TSi and TSk). When
multiple sets are encountered, every possible combination is
evaluated.

(Slide 44/124)

Other aspects & and extensions → Extending mathematical sets to the system.txt framework

PBPK Abstraction
PBPK models using mathematical sets

In order to take advantage of the set notation, we must first alter slightly how organs are
modeled. Consider the liver which has drug entering directly from the lung as well as those
organs upstream of the liver (e.g. the gut). Traditionally each of these flows would be defined
separately as inputs into the liver. Instead we define the total mass flow in the vascular space
(MV) for each organ as a dynamic secondary parameter (see the figure). When this is done,
then the ODEs (See [SB]) describing each organ are structurally the same.

(Slide 45/124)[SB] Shah & Betts (2012)

Other aspects & and extensions → Extending mathematical sets to the system.txt framework

PBPK Implementation

This abstraction from the previous slide has been implemented for the system described by [SB],
and can be seen by looking at the system-pbpk.txt file. The set ORG was created with all of
the organs listed. This enabled all of the organ ODES to be written using the portion of the
system.txt file listed below (separated into the vascular, endosomal, and interstitial spaces).

defining the organ set
<SET:ORG> HEART; LUNG; MUSCLE; SKIN; ADIPOSE; BONE; BRAIN; KIDNEY; LIVER; SM_INT; LG_INT; PANCREAS; THYMUS; SPLEEN; OTHER

Plasma (Vascular Space)
Vascular Vascular Mass Loss to Pinocytosis Pinocytosis
Mass In Leaving Interstitium Uptake Return
<ODE:C_V_{ORG}> (M_VI_{ORG} - Q_VOUT_{ORG}*C_V_{ORG} - (1.0-SIGMA_V_{ORG})*L_{ORG}*C_V_{ORG} - CL_UP_{ORG}*C_V_{ORG} + CL_UP_{ORG}*FR*C_E_B_{ORG})/V_V_{ORG}
Blood Cells (Vascular Space)
<ODE:C_BC_{ORG}> MT_BC_{ORG}/V_BC_{ORG}

#
Endosomaal space
Endosomal Uptake FcRn Binding FcRn Degradation
Free Drug Association Disassociation
<ODE:C_E_UB_{ORG}> (C_V_{ORG} + C_I_{ORG})*CL_UP_{ORG}/V_E_{ORG} - K_on_FCRN*C_E_UB_{ORG}*FCRN_{ORG} + K_off_FCRN*C_E_B_{ORG} - K_deg*C_E_UB_{ORG}
Free FCRN
<ODE:FCRN_{ORG}> C_E_B_{ORG}*CL_UP_{ORG}/V_E_{ORG} - K_on_FCRN*C_E_UB_{ORG}*FCRN_{ORG} + K_off_FCRN*C_E_B_{ORG}
FCRN Bound
<ODE:C_E_B_{ORG}> - C_E_B_{ORG}*CL_UP_{ORG}/V_E_{ORG} + K_on_FCRN*C_E_UB_{ORG}*FCRN_{ORG} - K_off_FCRN*C_E_B_{ORG}

#
Interstitial Space
#
<ODE:C_I_{ORG}> (1.0-SIGMA_V_{ORG})*L_{ORG}*C_V_{ORG}/V_I_{ORG}
<ODE:C_I_{ORG}> - (1.0-SIGMA_I_{ORG})*L_{ORG}*C_I_{ORG}/V_I_{ORG}
<ODE:C_I_{ORG}> - CL_UP_{ORG}*C_I_{ORG}/V_I_{ORG}
<ODE:C_I_{ORG}> + CL_UP_{ORG}*(1.0-FR)*C_E_B_{ORG}/V_I_{ORG}

Relevant portion of system.txt file

(Slide 46/124)examples/system-pbpk.txt

Other aspects & and extensions → Altering the structure and parameters within a simulation

Simulation Flow Control
Controlling model structure and parameterization on the fly

It may be necessary to alter aspects of the system depending on
the situation. This may be simple or complex, and there are two
different ways to control this:
1. Structural: Consider a model with a soluble target. It may be

desirable to code the model where the target may or may not
transport into the peripherial tissues. This can be accomplished by
creating a switching parameter that can be either one or zero that is
multiplied by the transport rates. Then the model can be
parameterized (Slide 37) for two different parameter sets: one where
the control parameter is 1 (transport enabled) and another where it
is 0 (transport disabeled).

2. Time and Variable Dependent: We have a one compartment model
with linear elimination that we want to switch to a slower rate after
a certain time or when the concentration of the drug drops to a
certain level (whichever comes first).

The following slides will illustrate each method.

(Slide 47/124)

Other aspects & and extensions → Altering the structure and parameters within a simulation

Target Presence in Peripherial Tissues
Structural control through parameterization

In this example it is assumed that the target
concentrations in both volumes will be specified, and that
the nominal rate of transport from the plasma to the
tissue kpt_nom will be specified. The nominal reverse
transport can be calculated from mass balances:

Tp

ksyn

kdeg

VpVt

Tt
kpt

ktp

<As> ktp_nom = kpt_nom*Tp_IC*Vp/(Tt_IC*Vt)
The parameter TISSUE is used to
control the flows. In the default
parameter set, the value is 1. And in
the t_off parameter set, it has a value
of 0.
<PSET:default> Tt On
<PSET:t_off> Tt Off
<PSET:t_off:TISSUE> 0

The values for the transport rates used
in the ODEs are then the following
secondary parameters:
<As> ktp = ktp_nom*TISSUE
<As> kpt = kpt_nom*TISSUE

See system file indicated below for more
details

It is important to construct quality control scripts to verify
that the system is behaving as expected

(Slide 48/124)examples/system-target.txt

Other aspects & and extensions → Altering the structure and parameters within a simulation

Piecewise-Continuous Parameters
<IF:?:?>

In this example we specify fast (kelf) and slow (kels) rates of
elimination. We want to have the fast rate be active when the
drug concentration is above Cth and the time is below Tf. The
system parameters would look like:

<P> kelf 1.0 eps inf 1/time yes System
<P> kels 0.01 eps inf 1/time yes System
<P> Cth 10 eps inf conc yes System
<P> Tf 10 eps inf time yes System

Now we need to define the rate of elimination such that the
constraints above are followed. First we define kel as a dynamic
secondary parameter with a value of 0.0. Then we define the
different conditions and relevant values:
<Ad > kel = 0.0
<IF:kel:COND > SIMINT _AND[SIMINT _LT[SIMINT _TIME][Tf]][SIMINT _GT[Cp][Cth]]; kelf
<IF:kel:ELSE > kels

(Slide 49/124)examples/system-pwc.txt

Other aspects & and extensions → Altering the structure and parameters within a simulation

Piecewise-Continuous Parameters (Contd.)
The details

To specify a conditional assignment use the statement:
<IF:name:COND> boolean; value
Here name is the name of the secondary parameter be defined and COND indicates
that we have a boolean condition that needs to be satisfied. The condition
(boolean) can be and, or, greater than, etc. relationships. The functions used to
describe these relationships are specified in system_help.txt. The parameter
will be assigned to have the value when this boolean relationship is true. These
conditions can be a funciton of different elements of the system depending on
whether or not name refers to a static or dynamic secondary parameter:
I <As> function of system parameters, previously defined static secondary

parmaeters and covariates that do not change for a given subject.
I <Ad> function of system parameters, static secondary parmaeters, states,

previously defined dynamic secondary parameters and covariates.
It is important to include a default ELSE condition:
<IF:name:ELSE> value

(Slide 50/124)examples/system-pwc.txt

Other aspects & and extensions → Defining datasets, variance parameters, & IIV

Defining Data Files
<DATA:?:?>

<DATA:FILE:CSV> data/mydata.csv
This is used to define the data file to be used. This should be in a
CSV format and optionally the first row can contain column names.

<DATA:HEADER:AUTOMATIC>
If this option is used, then the build script will attempt to read the
first row of the specified CSV file. These will then be used to
define the names of the columns.

<DATA:HEADER:MANUAL> col1; col2; col3;
Alternatively it’s possible to specify the names of the columns
manually. This is done by using the MANUAL option and then
specifying the names delimited by semicolons.

(Slide 51/124)

Other aspects & and extensions → Defining datasets, variance parameters, & IIV

Variance Parameters
<VP>

Variance parameters are specified using the same format as system
parameters (<P>) :
name value lower _ bound upper _ bound units editable grouping
<VP > CL 1.0 eps inf 1/ hr yes Variance

The difference being that the <VP> descriptor is used and that the
grouping is set to Variance.

(Slide 52/124)

Other aspects & and extensions → Inter-Individual Variability

Inter-Individual Variability
<IIV:?> ? & <IIVCOR:?> ?

To define an IIV term named ETACL with a
variance of 0.15 use the following descriptor <IIV:ETACL> 0.15

The specification to the right can be used to
associate this IIV term with the parameter CL
and specify that it has a lognormal distribution
(LN). Alternatively a normal (N) distribution
can be used.

<IIV:ETACL:LN> CL

Next we specify the IIV term ETAV with a
variance of 0.1. This IIV term also has a
lognormal distribution and is applied to the
parameter V.

<IIV:ETAV> 0.10
<IIV:ETAV:LN> V

Now we can define the covariance (off-diagional
elements) between CL and V to be 0.01 by
using <IIVCOR:?:?>

<IIVCOR:ETAV:ETACL> 0.01

The order isn’t important and the IIV terms
can be reversed <IIVCOR:ETACL:ETAV> 0.01

(Slide 53/124)

Other aspects & and extensions → Inter-Individual Variability

Inter-Individual Variability and Parameter Sets
<IIVSET:?> ? & <IIVCORSET:?> ?

By default all parameter sets will have inter individual variability specified using
the IIV <IIV> and <IIVCOR> descriptors. To associate a specific set of IIVs to a
parameter set use the <IIVSET> and <IIVCORSET> desciriptors. These set
descriptors operate differently than the parameter set descriptors (<PSET>) in
that the entire variance covariacne matrix needs to be specified.

If the parameterset MYPSET has been defined then the following could be used to
define the IIV for the parameters Q and CL

<IIVSET:MYPSET:ETAQ> 0.05
<IIVSET:MYPSET:ETAQ:LN> Q

<IIVSET:MYPSET:ETACL> 0.25
<IIVSET:MYPSET:ETACL:LN> CL

<IIVCORSET:MYPSET:ETAQ:ETACL> .01

(Slide 54/124)

Other aspects & and extensions → Shiny Model Interface

General Interface Elements
Linking elements between system.txt and the GUI

<PSET:default>

<P>

<O>

<OPT:TS>

<OPT:output_times>

<PSET:IIV> system.png

<R>

Model elements: ubiquity_app.R, <B:?>, <O>, <PSET:?:?>?, &
<TS:?>. For more details on the Shiny interface (customization,
usage, deployment etc) see Slide ?? of the R workflow section
portion of the workshop.

(Slide 55/124)

Software Targets →

Software Targets

(Slide 56/124)

Software Targets →

Building the System

To build a system file you simply need to run the Perl script
included in the template (build_system.pl). If run with no
arguments it will read in the file system.txt an compile files for
the different software targets. If you want to build a different
system file (mysys.txt) , you simply make that the first argument
to build_system.pl

perl build_system.pl mysys.txt

After the system has been built, files will be created in transient
to support the different software targets.

(Slide 57/124)

Software Targets → Matlab workflow

Matlab Workflow

Several files related to analysis in Matlab are generated, and are
listed below. For a detailed description of these files and their use,
see the part on the Matlab Workflow
(Slide 65).

Template scripts:
I auto_simulation_driver.m
I auto_analysis_estimation.m

Support files
I auto_fetch_system_information.m
I auto_map_simulation_output.m
I auto_initial_sizes.h
I auto_common_block.h

I auto_odes.h
I auto_odes.m
I auto_outputs.h
I auto_remap_odes.h
I auto_sim.m

(Slide 58/124)

Software Targets → R workflow

R Workflow

Several files related to analysis in R are generated, and are listed
below. For a detailed description of these files and their use, see
the part on the R Workflow
(Slide ??).

Template scripts:
I auto_simulation_driver.r
I auto_analysis_estimation.r

Support files
I auto_rcomponents.r
I r_ode_model.c

(Slide 59/124)

Software Targets → Adapt

Adapt

Currently the system is being generate as a Fortran file
(target_adapt_5.for) For each parameter set (PSN) a separate
parameter file is also generated: target_adapt_5-PSN.prm. This
should be able to be used for naïve-pooled analysis and individual
simulations. Currently, the population components need to be
added:
I IIV terms
I Covariate hooks

(Slide 60/124)

bet
a

Software Targets → Berkeley-Madonna

Berkeley-Madonna

For each parameter set (PSN) a target file will be generated:
target_berkeley_madonna-PSN.txt
Placeholders are created for inputs such as infusion rates and
covariates. These and bolus inputs will need to be specified by the
end user.

(Slide 61/124)

Software Targets → mrgsolve

mrgsolve

For each parameter set (PSN) a target file will be generated:
target_mrgsolve-PSN.cpp

(Slide 62/124)

Software Targets → NONMEM

NONMEM
<NONMEM:INPUT:DROP:?> & <NONMEM:INPUT:RENAME:?>?

For each parameter set (PSN) a target file will be generated:

target_nonmem-PSN.txt

This software target is incomplete and is intended to provide a starting
point for a NONMEM analysis. If there is a NONMEM user that would
like to work to develop this target please reach out to the Ubiquity
developers here: help.ubiquity.tools

There are certain NONMEM specific considerations. In the system.txt
file you can specify a dataset using the <DATA:?:?> delimiter. When the
system is built that dataset will be read in and if there are headers it will
construct the $DATA component of the control stream. If you want to
drop the column NTIME and rename the column WT to WEIGHT you can
use the following:

<NONMEM:INPUT:DROP:NTIME>
<NONMEM:INPUT:RENAME:WT> WEIGHT

(Slide 63/124)

alph
a

http://help.ubiquity.tools

Software Targets → NONMEM

NONMEM
<INDEX:?:?> ? & <AMTIFY>?;?;?

It can be necessary to link state and output numbers in the dataset
to the order of the states (differential equations) and outputs
within the control stream. To force the state Ap to to be the first
ODE and Cp to be the second output you can use the following:

<INDEX:STATE:Ap> 1
<INDEX:OUTPUT:Cp> 2

If in your system.txt file you are modeling in terms of
concentration but you want to convert that to amounts within the
control stream you can use the <AMTIFY> notation. If you defined
the state Cp but want it to be Ap within the control stream and
these are related by Cp = Ap/Vp and Vp is a parameter the
following would be used:

<AMTIFY> Cp; Ap; Ap/Vp

(Slide 64/124)

alph
a

→

Table of Contents: Matlab Workflow I
Model ID and simulation

Implementation details
Analysis template
Location and overview of custom functions

Running simulations
Default analysis script
Simulation output:accessing different components
Sampling subjects and simulating with IIV

Parameter Estimation
Estimation Overview
Front Matter
Loading Data Files
Defining Cohorts
Estimating Parameters

Controlling scripts with cfg

(Slide 65/124)

→

Table of Contents: Matlab Workflow II
Model ID and simulation

General Operations
Setting Options
Simulation Options
Ode Solver Options
IIV Simulation Options
Estimation Options
Titration Options

(Slide 66/124)

Implementation details →

Implementation Details

(Slide 67/124)

Implementation details →

Toolboxes

The following toolboxes are needed:
I Simulink
I Optimization Toolbox
I Statistics and Machine Learning Toolbox

(Slide 68/124)

Implementation details → Analysis template

Template
The starting point for an analysis

To begin an analysis, create a copy of the template directory.
This should contain all of the files that will be needed to create a
system, build the different targets, and run the system within
Matlab.

The following slides will describe the Matlab workflow for
compiling and running simulations. File and directory names are
specified relative to the root of the template directory.
I examples — example system files
I library — commonly used functions for running simulations,

reading data files, and presenting output
I transient — directory created when a system is built that

contains the generated files (auto* and target*)

(Slide 69/124)template.ubiquity.tools

http://template.ubiquity.tools

Implementation details → Location and overview of custom functions

Custom Functions
provision_workspaceIn the template there is a directory named library, this contains

the following two directories:
I matlab_general These are general functions that are used to

facilitate analysis and output generation. In this directory
there is a file called notes.txt which contains a listing of the
functions, a brief description of their use, and an indication of
the file was obtained from the Matlab file exchange.

I id_simulation These are functions used specifically for
running simulations and parameter estiamtion. Some of these
are intended to be used directly while others are intermediate
functions (functions called by other functions) and not
intended to be run by the end user directly.

The script in the root of the template directory named
provision_workspace.m is used to add these directories to the
Matlab path. This script must be run near the beginning of
any analysis.

(Slide 70/124)

Implementation details → Location and overview of custom functions

Building the System
build_system translating system.txt into target formats

In the template there is an examples directory. Copy the file
examples/system-tmdd.txt to system.txt. And run the script
build_system.m.
If no errors are encountered
something like the text to the right
should be displayed. The last
message (Simulink found)
indicates that you have a license for
Simulink and the C file was
compiled. This will allow you to
switch between the slower m-file and
the faster C-file.

>> build _ system

Building the system to
generate the model targets

-> Matlab : C/ Simulink
-> Matlab : m-file

Simulink found
mex -ing the model file
Building with ’Xcode with Clang ’.
MEX completed successfully .

If any errors are encountered while building the system (such as
parameters and states that share the same name), they will be
displayed here.

(Slide 71/124)build_system.m

Running simulations →

Running Simulations

(Slide 72/124)

Running simulations →

Example System

The TMDD system in the examples directory is being used as a
starting point to discuss how simulations are run
(examples/system-tmdd.txt). Modifications made to this
system, specifically simulations with variability, will be highlighted.

We will plot the output of the total drug (Cp_total) relative to
the affinity (KD) as well as the target coverage (Coverage). This
will be done in response to dosing 10 mpk every two weeks for a
total of four doses.

So in the simulation_example directory run build_system to
compile the system.

(Slide 73/124)

Running simulations →

Running Simulations
auto_simulation_driver & model_gui

After building the system there are two options for running the
simulation. First, and probably the easiest, is to run the simulation
through the graphical interface. This is done by running the
following command:
» model_gui

Building the system creates several files in the transient
directory. The file auto_simulation_driver.m provides all of the
components needed to run the simulation at the scripting level.
But you should not edit this file directly because it will be over
written each time the system is built. Instead copy the file from
the transient directory to the main directory (e.g., analysis.m).

(Slide 74/124)transient/auto_simulation_driver.m

Running simulations →

Simulation Template

As examples, two scripts are provided which build off of the
simulation template (auto_simulation_driver.m)
I analysis_single.m Simulates the typical response to

dosing. These are deterministic simulations which provide a
single profile.

I analysis_multiple.m In this case the response of multiple
subjects with interindivudal variability is simulated with the
same dosing, covariates, etc.

Each of these files begins basically the same way. These common
elements are described first and then the components that are
different are then addressed.

(Slide 75/124)

Running simulations → Default analysis script

General Simulation Components
Common elements

First the workspace is cleared and the system is rebuilt. This
ensures that any changes in the system.txt file are included in
the simulations:

clear; close all;
build_system;

Next the paths are added to make the functions described above
available:

provision_workspace;

The function auto_fetch_system_information returns the
system configuration variable cfg. This is a data structure that
stores information about the system and simulations to be
performed.
cfg = auto_fetch_system_information();

(Slide 76/124)

Running simulations → Default analysis script

General Simulation Components
Common elements (Contd.)

Next the default parameter set is selected and the corresponding
vector of parameters is retrieved:

cfg = system_select_set(cfg, ’default’);

parameters = system_fetch_parameters(cfg)

Because many default values for dosing may be specified in the
system.txt file, these are first zeroed out. Then the value for
bolus dosing to the state Cp is specified:

cfg = system_zero_inputs(cfg);
cfg = system_set_bolus(cfg, ’Cp’, ... %

[0 2 4 6], ... % weeks
[10 10 10 10]); % mpk

(Slide 77/124)

Running simulations → Default analysis script

General Simulation Components
Common elements

The cfg variable contains default options for running simulations.
These can be overwritten using system_set_option. Here we are
specifying the output times:
cfg = system_set_option(cfg, ’simulation’, ...

’output_times’, ...
linspace(0,48*24, 1000)’);

Next we specify that we want to use the compiled c-file with
simulink to speed up integration:
cfg = system_set_option(cfg, ’simulation’, ...

’integrate_with’, ...
’simulink’);

Lastly the ode solver ode23s is specified.
cfg = system_set_option(cfg, ’simulation’, ...

’solver’, ...
’ode23s’);

(Slide 78/124)

Running simulations → Simulation output:accessing different components

Simulation Output
run_simulation_ubiquity

som = run_simulation_ubiquity(parameters, cfg);
When a simulation is run, a data structure is created (named som here). This
data structure maps simulation information into different fields. There are five
main fields
I raw The raw simulation output that Matlab provides (fields: t

(simulation times), x (state variables), and y (outputs))
I times This contains at least one field sim_times (the default simulation

time values), and additional fields for each time scale specified using
<TS:?>

I states This structure contains a field for each state in the system as well
I outputs Similarly each output specified using <O> will also have a field
I meta Composed of two fields (parameters & secondary_parameters)

each with fields of named values for those parameters (system or
secondary) that were used for this simulation run

(Slide 79/124)analysis_single.m

Running simulations → Simulation output:accessing different components

Simulation Output (Contd.)
Some examples using the TMDD system

The remainder of the generated analysis script will simply plot
each specified output. This portion can be modified depending on
the specific analysis being run. Here are some examples that may
prove to be useful:

Simulation Output in Scripts:
The following will allow you to see the fractional coverage (an
output) over weeks:
plot(som.times.weeks, som.outputs.Coverage)

If you would rather see how the free target (a state) changes over
days:
plot(som.times.days, som.states.Tp)

If you’re curious, and would like to confirm that the correct initial
condition was used in the simulation:
disp(som.meta.parameters.Tp_IC)

(Slide 80/124)

Running simulations → Simulation output:accessing different components

PK, Coverage and KD Typical Value
Total drug and range of KDs (top), coverage (bottom)

0 5 10 15 20 25 30 35 40 45 50

T
o
ta

l
D

ru
g
 a

n
d
 K

D
 (

n
M

)

10
-2

10
0

10
2

Time (days)
0 5 10 15 20 25 30 35 40 45 50

F
ra

c
ti
o
n
a
l
T

a
rg

e
t
C

o
v
e
ra

g
e

0.5

0.6

0.7

0.8

0.9

1

(Slide 81/124)

Running simulations → Simulation output:accessing different components

Simulation Output (Contd.)
Validating system at steady state: check_steady_state
Sometimes we may want to validate portions of the system to make sure that
changes made to certain aspects have not inadvertently introduced any errors. One
check, is to make sure the system is running at steady state in the absence of
dosing. If we fix the dosing to zero (system_zero_inputs), we can run the script
and create the som variable. This can then be checked by:
check_steady_state(som)

What this does is look at all of the states in som to see if there are any significant
changes (those not attributable to numerical errors). If no problems are found you
should see the following message:
|-> No steady state offsets found

This indicates that the system is
running at steady state. Otherwise, you
may see something like the message to
the right. This can be used to debug
your system and identify the problems
with steady state calculations.

#-> Possible steady state offset
#-> range | | state
#-> (max -min) | max(abs(s)) | state
#->------------------------------------
#-> 2.510e -04 | 1.000 e+01 | Tp
#->------------------------------------
#-> Deviations from steady state found
#-> See above for details
#-> Machine Precision is 2.220e -16

(Slide 82/124)library/id_simulation/check_steady_state.m

Running simulations → Sampling subjects and simulating with IIV

Simulating Multiple Subjects
Specifying variability

The TMDD example is modified by assuming that the variance of CL, Vt
and Tp_IC is 0.05 and the covariance of CL and Vt is 0.01. We also
assume the affinity has a relatively high variance of 0.5. To do this we
would need to add the following to the examples/system-tmdd.txt file:
<IIV:ETACL> 0.05
<IIV:ETACL:LN> CL
<IIV:ETAVt> 0.05
<IIV:ETAVt:LN> Vt
<IIV:ETATp_IC> 0.05
<IIV:ETATp_IC:LN> Tp_IC
<IIVCOR:ETAVt:ETACL> 0.01
<IIV:ETAKD> 0.5
<IIV:ETAKD:LN> KD
See <IIV:?> ? & <IIVCOR:?> ? for more information.

(Slide 83/124)system.txt

Running simulations → Sampling subjects and simulating with IIV

Simulating Multiple Subjects
Setting optoins and running the simulation

The simulation inputs and options are defined the same as the would be
for simulations of a single subject. What can be altered are the stochastic
options. Here we specify that we want to simulate 100 subjects:

cfg = system_set_option(cfg, ’stochastic’, ’nsub’, 100);

You can also specify the desired confidence interval and the random seed
to be used.

Then using the typical parameter values and the inputs specified those
100 subjects will be simulated:

pred = simulate_subjects(parameters, cfg);

The variable pred is a data structure, similar to som for individual
simulations, which contains the output of the stochastic simulations.

(Slide 84/124)analysis_multiple.m

Running simulations → Sampling subjects and simulating with IIV

Multiple Subject Output
Parameters, outputs & states

Parametric Information
The subject level parameter information is stored in two locations:
pred.subjects.all Full parameter vector (one per column) for
each subject
pred.subjects.name A field for each parameter with
interindividual variability. Each field contains a vector of parameter
values that were used.

Time-Course Information
The other fields contain the time-course for each subject:
pred.times A field for every timescale containing the sample
times from the simulation.
pred.states and pred.outputs There is a field for each state or
output which contains a profile for each subject (one per column)
and each row corresponds to the sampling times in pred.times

(Slide 85/124)

Running simulations → Sampling subjects and simulating with IIV

Multiple Subject Output
Statistical Information

Time-Course Information (Contd.)
pred.states_stats and pred.outputs_stats
There is a field for each state or output which contains the
following fields:

lb_ci: lower bound of the confidence interval for that named
value
ub_ci: upper bound of the confidence interval for that named
value
mean: mean of the prediction for that named value
median: median of the prediction for that named value

These are all vectors corresponding to the sampling times in
prediction.times.

(Slide 86/124)

Running simulations → Sampling subjects and simulating with IIV

Multiple Subject Output
atch variables

Fields to generate shaded regions
pred.times_patch, pred.states_patch and
pred.outputs_patch These contain vectors to be used with the
patch command to generate shaded regions. A field for each
specified timescale is provided in times_patch and a
corresponding field for each state and output is found in
states_patch and outputs_patch.

For example to plot the median response with a shaded confidence
interval for the output Cp_Total over the timescale of weeks, the
following could be used:
patch(pred.times_patch.weeks, ...

pred.outputs_patch.Cp_Total.ci, ’y’);

plot(pred.times.weeks, ...
pred.outputs_stats.Cp_Total.mean, ’b-’);

(Slide 87/124)

Running simulations → Sampling subjects and simulating with IIV

PK, Coverage and KD with Varability
Total drug and range of KDs (top), coverage (bottom)

0 5 10 15 20 25 30 35 40 45 50

T
o
ta

l
D

ru
g
 a

n
d
 K

D
 (

n
M

)

10
-2

10
0

10
2

Time (days)
0 5 10 15 20 25 30 35 40 45 50

F
ra

c
ti
o
n
a
l
T

a
rg

e
t
C

o
v
e
ra

g
e

0.5

0.6

0.7

0.8

0.9

1

(Slide 88/124)

Parameter Estimation →

Parameter Estimation

(Slide 89/124)estimation_example

Parameter Estimation →

Example: Parent-Metabolite PK Model

Mpb Mpt

Mmb

(Slide 90/124)

Parameter Estimation →

Representation in system.txt Format
<P> Vp 10.0 1e -5 100 L yes System
<P> Vt 10.0 1e -5 100 L yes System
<P> Vm 30.0 1e -5 100 L yes System
<P> CLp 1.0 1e -5 100 L/hr yes System
<P> CLm 1.0 1e -5 100 L/hr yes System
<P> Q 0.3 1e -5 100 L/hr yes System

<PSET:default > Original Estimates

<VP > slope _ parent 0.1 1e -9 10 -- no Variance
<VP > slope _ metabolite 0.1 1e -9 10 -- no Variance

<B:times >; [0]; 1; hours
<B:events >; Mpb; [0]; 70; mpk

<ODE:Mpb > -(CLp/Vp + Q/Vp)*Mpb + Q/Vt*Mpt
<ODE:Mpt > Q/Vp*Mpb - Q/Vt*Mpt
<ODE:Mmb > CLp/Vp*Mpb - CLm/Vm*Mmb

<O> Cpblood = Mpb/Vp
<O> Cmblood = Mmb/Vm

<TS:hours > 1
<TS:days > 1/24

<IIV:ETAVp > 0.08
<IIV: ETAVp :LN > Vp
<IIV:ETAVt > 0.08
<IIV: ETAVt :LN > Vt
<IIV:ETACLp > 0.08
<IIV: ETACLp :LN > CLp
<IIV:ETACLm > 0.08
<IIV: ETACLm :LN > CLm

<OPT: output _times > SIMINT _SEQ [0][100][1]
<DATA: HEADER :AUTOMATIC >

(Slide 91/124)estimation_example/system.txt

Parameter Estimation → Estimation Overview

Overall Workflow
auto_analysis_estimation

Analysis Process
1. Create system configuration variable (cfg), identify the

parameter set and parameters to be estimated.
2. Specify the simulation and estimation options
3. Load relevant datasets
4. Define cohorts to be included in the estimation
5. Perform the parameter estimation
6. Simulate the response of the cohorts to the estimation results
7. Plot the cohort data and simulated predictions

analysis_parent.m Analyize parent data at the 10 and 30 mg
doses. With the variance equal to model prediction squared.
analysis_parent_metabolite.m Analyize only parent and
metabolite data at the 10 and 30 mg doses. Using maximum
likelihood with a proportional error model.

(Slide 92/124)

Parameter Estimation → Front Matter

Preamble

clear; close all;
flowctl = ’estimate’;
analysis_name = ’parent_d1030’;

The top part of the analysis scripts
are used to clear out the workspace,
and create variables to control

the flow of the script flowctl and identify the analysis with a short
name analysis_name. Normally when beginning an estimate flowctl
can be set to ’plot guess’. This will plot the model predictions over
the data for each cohort for the initial guess to visualize how well the
initial guess predicts the data. The analysis_name? will be

build_system
provision_workspace;
mc = fetch_color_codes;

prepended to different outputs of the
estimation process and stored in
output/. Next the system is built
and the paths are setup. The
variable mc contains some predefined
colors that can be used in plotting.

(Slide 93/124)
? Names must begin with a letter and can contain letters, numbers and underscores

Parameter Estimation → Front Matter

System Information

The system information is stored in the ubiquity model object cfg. The
parameters that are going to be estimated are listed in pnames (the
others will be fixed). This is passed to system_select_setwhen the
default parameter set is selected.
% Pulling out the system information
cfg = auto_fetch_system_information;
% Selecting the default parameter set:
pnames = {’Vp’

’Vt’
’CLp’
’Q’};

cfg = system_select_set(cfg, ’default’, pnames);

Next different options (solver, estimation, etc) are set using
system_set_option.
cfg = system_set_option(cfg, ’simulation’, ’integrate_with’, ’simulink’);
cfg = system_set_option(cfg, ’solver’, ’solver’, ’ode23s’);

(Slide 94/124)

Parameter Estimation → Loading Data Files

Loading Data

Datasets can be loaded at the scripting level using the function
system_load_dataset. These can be loaded from excel sheets,
delimited files (csv or tab), or data frames using the following syntax:

cfg = system_load_dataset(cfg, ’DSNAME’ ’data.xls’, ’sheetname’);
cfg = system_load_dataset(cfg, ’DSNAME’ ’data.csv’);
cfg = system_load_dataset(cfg, ’DSNAME’ ’data.tab’);

Where DSNAME is the name? of the dataset to be used internally. Multiple
datasets can be loaded as long as they are given different names. Datasets
should be in a NONMEM-ish format with the first row containing the
column header names. Also, only observation records are needed.
Alternatively a dataset, if it is a CSV file, can be specified in the
system.txt file using the <DATA:?:?>. A data file loaded this way will
have the name default.

(Slide 95/124)
? Names must begin with a letter and can contain letters, numbers and underscores

Parameter Estimation → Loading Data Files

Datafile Format

Parent (PT) and metabolite (MT) tiemcourse and BLQ are mg/L.
The times (TIME) are in hours and the DOSE is in mg/kg. Values
below the BLQ are listed as -1.

TIME ID PT MT BLQ DOSE
2.0833e-02 1.0000e+00 8.6226e+00 -1.0000e+00 1.0000e+00 1.0000e+00
4.1667e-02 1.0000e+00 8.1785e+00 -1.0000e+00 1.0000e+00 1.0000e+00
7.0000e+00 1.0000e+00 2.3188e+00 -1.0000e+00 1.0000e+00 1.0000e+00
1.4000e+01 1.0000e+00 1.9491e+00 1.0260e+00 1.0000e+00 1.0000e+00
1.4000e+01 2.0000e+00 1.3818e+00 1.1974e+00 1.0000e+00 1.0000e+00
2.1000e+01 2.0000e+00 -1.0000e+00 1.0475e+00 1.0000e+00 1.0000e+00
2.8000e+01 2.0000e+00 -1.0000e+00 1.1375e+00 1.0000e+00 1.0000e+00

...
...

...
...

...
...

7.0000e+01 6.0000e+01 3.3954e+00 1.1927e+01 1.0000e+00 3.0000e+01
8.4000e+01 6.0000e+01 1.6391e+00 5.5330e+00 1.0000e+00 3.0000e+01
9.8000e+01 6.0000e+01 1.7888e+00 4.6481e+00 1.0000e+00 3.0000e+01

To load this dataset and name it pmdata the following is used:
cfg = system_load_dataset(cfg, ’pmdata’ , ’data.csv’);

(Slide 96/124)Data: estimation_example/data.csv

Parameter Estimation → Defining Cohorts

Defining Cohorts
The following removes any cohorts that have been defined:
cfg = system_clear_cohorts(cfg);

Next we create the data structure cohort. Each cohort has a
name? (eg dose_10). The dataset (pmdata) containing the
information for this cohort is identified. Next it is necessary to
define a filter (ie cohort filter cf) which identifies the subset of the
dataset (DOSE = 10) that pertains to this cohort:

clear cohort;
cohort.name = ’dose_10’;
cohort.cf.DOSE = [10];
cohort.dataset = ’pmdata’;

Next we define the dosing for this cohort. It is only necessary to
define those inputs that are non-zero.

cohort.inputs.bolus.Mpb.AMT = [10];
cohort.inputs.bolus.Mpb.TIME = [0];

(Slide 97/124)
? Names must begin with a letter and can contain letters, numbers and underscores

Parameter Estimation → Defining Cohorts

Defining Cohorts (Contd.)

Next we need to match the outputs in the model to the outputs in the
dataset. Under cohort.outputsthere is a field for each output. Here
output name of the serum pk of the parent output is Parent. The times
and observations in the dataset are found in the ’TIME’ column and the
’PT’ column (missing data specified by -1). These are mapped to the
model outputs (which MUST have the same units) ’hours’ and
’Cpblood’:

cohort.outputs.parent.obs.time = ’TIME’;
cohort.outputs.parent.obs.value = ’PT’;
cohort.outputs.parent.obs.missing = -1;
cohort.outputs.parent.model.time = ’hours’;
cohort.outputs.parent.model.value = ’Cpblood’;

Note: Output names should be consistent between cohorts so they
will be grouped together when plotting results.

(Slide 98/124)

Parameter Estimation → Defining Cohorts

Defining Cohorts (Contd.)

You must also specify the variance model to use for this cohort/output
combination. This is a string that can be ’1’ for least squares estimation.
Or a mathematical formula using any of the system parameters and
PRED, TIME, and OBS for the model prediction, sample time and
observation respectively. For example ’PRED^2’ or ’SLOPE*PRED^2’
would be valid if SLOPE were a system or variance parameter.

In this example a least squares estimation is being performed:
cohort.outputs.parent.model.variance = ’1’;

Lastly this cohort must be added to cfg:
cfg = system_define_cohort(cfg, cohort);

This is a brief overview, see the help for system_define_cohort more
details on how to describe a cohort.

(Slide 99/124)

Parameter Estimation → Estimating Parameters

Parameter Estimation
Parameter estimation is performed using the following function:
pest =system_estimate_parameters(cfg, flowctl, analysis_name);
The parameter flowctl can take either of the following values:

I ’plot previous estimate’
I ’previous estimate as guess’

I ’estimate’
I ’plot guess’

The results are stored in output using the value of analysis_name
(’parent_d1030’ here) creating the following files:

I parent_d1030-monitor_estimation_progress.jpg (.pdf and .png) - This is
an image of the estimation status figure that is updated during the estimation.

I parent_d1030-parameters_all.csv? CSV file of all the parameters (names,
guesses, estimates, etc) parameter

I parent_d1030-parameters_est.csv? Same as the previous csv file except it
only contains the estimated parameters.

I parent_d1030-report.txt Estimation report with the estimates,
variance/covariance matrix, AIC, etc.

(Slide 100/124)
? these fields are only created if the solution statistics were successfully calculated.

Parameter Estimation → Estimating Parameters

Parameter Estimation
The estimates are stored in pest and this vector can be used to
simulate the system for all of the cohorts:

erp = system_simulate_estimation_results(pest, cfg);

The variable erp contains the simulated results at the parameter
estimates and the data for each cohort. This can then be plotted:

system_plot_cohorts(erp, plot_opts, cfg);
The variable plot_opts is used to control how predictions and
data are overlaid. The general format for a plot option for a given
output (OUTPUT) is:
plot_opts.outputs.OUTPUTt.option = value
For example, to set the axis scale to logarithmic the following
would be used:
plot_opts.outputs.OUTPUT.yscale = ’log’
The help for system_plot_cohorts details the different options
that can be set.

(Slide 101/124)

Parameter Estimation → Estimating Parameters

Accessing Estimation Results
The following simulates the system for each cohort.
erp = system_simulate_estimation_results(pest, cfg)
The variable erp contains the simulated information in both a structured
format and as a flat file. To access details for a given cohort COHORT and
output OUTPUT, the following structure would be used:
erp.cohorts.COHORT.OUTPUT
This has two fields. The first od has the following fields:
I var - variance
I time_smooth - smooth time vector
I pred_smooth - smooth prediction

vector

I time - observation times
I obs - observations
I pred - predictions at time

The output from run_simulation_ubiquity for the COHORT/OUTPUT
combination can be accessed using the som field:
erp.cohorts.COHORT.OUTPUT.som

(Slide 102/124)

Parameter Estimation → Estimating Parameters

Accessing Estimation Results

The other field of erp is erp.flat, this is a cell array with the following
headers:
I time - time in the units of the dataset
I obs - observation (type = ’record’), -1 (type=’smooth’)
I pred - model prediction
I var - variance (type = ’record’), -1 (type=’smooth’)
I res - residual error (type = ’record’), -1 (type=’smooth’)
I wres - weighted residual error (type = ’record’), -1 (type=’smooth’)
I cohort - cohort name
I output - output name
I type - entry type (record or smooth)

To save to a csv file use:cell2csv(erp.flat, ’myfile.csv’)

(Slide 103/124)

Parameter Estimation → Estimating Parameters

Speeding up Estimation

Parameter estimation involves running multiple simulations at each estimation
step. The speed of the estimation is dependent on how fast simulations run and
the number of simulations that need to be run. In the context of these scripts
there are two factors under your control:

Number of cohorts: Each cohort represents an extra set of simulations that
needs to be performed. To decrease the number of simulations that needs to be
performed, group your data so that you minimize the number of cohorts.

Number of sample points: Simulation speed decreases as the number of
sample times increases. Set the simualtion output times to sample sparsely
before the estimation. Then before running the simulations to generate figures
(just before before system_simulate_estimation_results)redefine the
simulation output times with more frequent samples.

(Slide 104/124)

Controlling scripts with cfg →

Controlling Scripts
with cfg

(Slide 105/124)

Controlling scripts with cfg →

System Information
cfg

The following command:

cfg = auto_fetch_system_information()

Creates a data structure called cfg, and this variable contains all
of the information about the system specified in the system.txt
file. This includes parameter values, parameterizations (parameter
sets), covariates, default dosing, etc. It also contains the details
which control a simulation (individual and stochastic).

At the scripting level it is necessary to alter these default values.
The next few slides discuss how to control simulations by using
system functions.

(Slide 106/124)transient/auto_fetch_system_information.m

Controlling scripts with cfg → General Operations

Parameter Information

Selecting the default parameter set
cfg = system_select_set(cfg, ’default’)

Retrieving a vector of parameters for the current parameter set:
parameters = system_fetch_parameters(cfg)

To overwrite parameter PNAME with VALUE use the following:
|parameters = system_set_parameter(cfg, ...

parameters, ...
’PNAME’, ...
VALUE)

Covariates may also change with the selected parameter set. These
can also be overwritten. To change the covariate COV, at times TV
to values CV use the following:
cfg = system_set_covariate(cfg, ’COV’, TV, CV)

(Slide 107/124)

Controlling scripts with cfg → General Operations

Model Inputs

By default the model inputs will have the values specified in the
system.txt file. When attempting to develop a placebo response or
construct a specific set of input profiles, it may be convenient to zero
out the values of the inputs (bolus and infusion rates). This can be
accomplished in the following manner:
cfg = system_zero_inputs(cfg)
With all of the inputs zeroed out, input profiles can be built. To set
the bolus dosing information for a state SNAME at times TV to values
BV use the following:

cfg = system_set_bolus(cfg, ’SNAME’, TV, BV)

To set the infusion rate information for a rate RNAME at times TV to
rates RV use the following:

cfg = system_set_rate(cfg, ’RNAME’, TV, RV)

(Slide 108/124)

Controlling scripts with cfg → General Operations

Variability

The variability in the system is specified using <IIV:?> ? & <IIVCOR:?> ?.
The variance and covariance can be specified using the following command:
cfg = system_set_iiv(cfg, IIV1, IIV2, VALUE)
If you want to set the covariance of ETACL and ETAVc to 0.03 the following
would be used:

cfg = system_set_iiv(cfg, ...
’ETACL’, ...
’ETAVc’, ...
0.03)

(Slide 109/124)

Controlling scripts with cfg → Setting Options

Options
system_set_option

Different options are defined using the following function:

system_set_option(cfg , ’GROUP ’, ...
’OPTION ’, ...
VALUE) ...

To use this you need to specify a GROUP, an OPTION and a VALUE. For example to
specify the simulation output times should be from 0 to 24, the following would be
used:

cfg = system_set_option(cfg , ’simulation ’, ...
’output_times ’, ...
linspace (0 ,24 ,100))

In the subsequent slides, the different groupings are described with the options
enumerated and the default values.

(Slide 110/124)

Controlling scripts with cfg → Simulation Options

Simulation Options
group = ’simulation’

This grouping controls general aspects of the simulation and has the
following options:
I ’include_important_output_times’- Automatically add

bolus, infusion rate switching times, etc: ’yes’(default), ’no’.
I ’integrate_with’- Specify if the ODE solver should use the

the matlab script (’m-file’, default) or compiled C through
Simulink (’simulink’)

I ’output_times’- Vector of times to evaulate the simulation
(default linspace(0,100)).

I ’solver’- Selects the ODE solver: ’ode23s’ (default),
’ode15s’, ’ode45’, etc.; see the documentation for Matlab
ODE solvers for an exhaustive list.

(Slide 111/124)

http://www.mathworks.com/help/matlab/math/ordinary-differential-equations.html
http://www.mathworks.com/help/matlab/math/ordinary-differential-equations.html

Controlling scripts with cfg → Ode Solver Options

ODE Solver
group = ’solver’

Depending on the solver, different options can be set. The documentation
for Matlab ODE solvers lists the different solvers. For a full list of options,
see the documentation for ODESET (help odeset). Some common options
to consider are:
I ’AbsTol’ - Relative error tolerance
I ’RelTol’ - Absolute error tolerance
I ’MaxStep’ - Maximum integration step size

To select the ode23s solver and set the maximum step size to 0.01, the
following would be used:
cfg=system_set_option(cfg, ’simulation’,

’solver’, ’ode23s’)
cfg=system_set_option(cfg, ’solver’,

’MaxStep’, 0.01)

(Slide 112/124)

http://www.mathworks.com/help/matlab/math/ordinary-differential-equations.html
http://www.mathworks.com/help/matlab/ref/odeset.html

Controlling scripts with cfg → IIV Simulation Options

Stochastic Simulations
group = ’stochastic’

When running stochastic simulations (inter-individual variability applied to system
parameters) it can be useful to specify the following:
I ’ci’ - Confidence interval (default 95)
I ’nsub’ - Number of subjects (default 100)
I ’seed’ - Seed for the random numebr generator (default 8675309)
I ’ponly’ - Only generate the subject parameters but do not run the

simulations (default FALSE)
I ’outputs’ - A character array of the predicted outputs to include (default all

outputs defined by <O>)
I ’states’ - A character array of the predicted states to include(default all

states

(Slide 113/124)

Controlling scripts with cfg → IIV Simulation Options

Stochastic Simulation Examples
group = ’stochastic’

If you wanted to generate 1000 subjects but only wanted the parameters, you would
use the following:

cfg = system_set_option(cfg , ’stochastic ’, ...
’nsub ’, 1000)

cfg = system_set_option(cfg , ’stochastic ’, ...
’ponly ’, true)

If you wanted to exclude states and only include the output Cp_nM, you would do
the following:

cfg = system_set_option(cfg , ’stochastic ’, ...
’states ’, {})

cfg = system_set_option(cfg , ’stochastic ’, ...
’outputs ’, {’Cp_nM ’)

(Slide 114/124)

Controlling scripts with cfg → Estimation Options

Estimation
group = ’estimation’

To perform an estimation the Matlab function fiminsearch is used. This is
controlled by using the optimset function. These values are set using the option
optimization_options. For example to dispaly the iterations, and set the
maximum number of iterations, function evaluations, and the tolerance the following
would be used:

cfg = system_set_option(cfg, ’estimation’, ...
’optimization_options’, ...
optimset(’Display’, ’iter’, ...

’TolFun’, 1e-3, ...
’MaxIter’, 3000, ...
’MaxFunEval’, 3000));

See the documentation for OPTIMSET (help optimset)

(Slide 115/124)

http://www.mathworks.com/help/matlab/ref/optimset.html

Controlling scripts with cfg → Estimation Options

Estimation (Contd)
group = ’estimation’

The option ’effort’ can be set to a value of 1 and a single parameter estimation
will be performed. This will monitor and display the estiamation process. The
monitor has the following options:
I ’monitor_exit_when_stable’ - ’yes’ or ’no’ (default)
I ’monitor_iteration_history’ - This is a positive integer (default 100)
I ’monitor_slope_tolerance’ - Positive number (default 0.001)

When ’monitor_exit_when_stable’ is ’yes’ the optimizer will finish up when
the parameters and objective function have ’stabilized’. This is accomplished by
fitting a line to these values over a specified iteration history and comparing the
largest slope to a tolerance.

When the ’effort’ is greater than 1, the monitoring will be turned off and the
estimation routine to try "harder" to find a good parameter estimate by performing
a simulated annealing routine to avoid local minima.

(Slide 116/124)

Controlling scripts with cfg → Estimation Options

Estimation (Contd)
group = ’estimation’

The figure generated during a single estimation is controlled by the
monitor_status_function option. This can be customized by the user. For
example it can be used to write the parameters at each optimization iteration to
a file. To do this simply copy the default estimation status function
(estimation_status.m) into the template root to say mystatus.m. Modify
that copy, and tell the estimation routine to use that function:

cfg = system_set_option(cfg, ’estimation’, ...
’monitor_status_function’, ...
’mystatus’);

If you wish to disable the status funciton (prevent the generation of the figure)
just set the monitory_status_funciton to an empty string:

cfg = system_set_option(cfg, ’estimation’, ...
’monitor_status_function’, ”);

(Slide 117/124)library/id_simulation/estimation_status.m

Controlling scripts with cfg → Estimation Options

Estimation (Contd)
Setting the initial guess for parameters

When performing a parameter estimation, the initial guess will be the value
specified in the system.txt file for the currently selected parameter set. The
following command can be used after the parameter set has been selected to
specify the value (VALUE) of the parameter PNAME and optionally the lower (lb)
and upper (ub) bounds:
cfg = system_set_guess(cfg, ’PNAME’, VALUE, lb, ub);
To set the initial guess for the parameter Vc to a value of 3, the following
would be used:

cfg = system_set_guess(cfg, ’Vc’, 3);

To specify the guess and overwrite the upper bound on Vc and set it to 5

cfg = system_set_guess(cfg, ’Vc’, 3, [], 5);

(Slide 118/124)

Controlling scripts with cfg → Estimation Options

Loading Datasets

cfg = system_load_dataset(cfg, ’dsname’, ’data_file’ , ’data_sheet’);

dsname - Short name given to the data set. This hsould begin with a
letter and can contain any combination of letters, numbers and _. No
spaces and no dashes can be used.

data_file - This is the name of the file and it can have the following
extensions: xls, csv, and tab. This file should be NONMEM-ish with the
column names in the first row.

data_sheet - When the file type is xls, then the excel sheet can be
specified as an option.

(Slide 119/124)

Controlling scripts with cfg → Titration Options

Defining Cohorts

The following clears any cohorts currently defined in the system:

cfg = system_clear_cohorts(cfg);

Subsequently, cohorts can be defined using the following command:

cfg = system_define_cohort(cfg, cohort);

Where cohort is a data structure describing the cohort being added.
This contains information about the dataset to be used, how the dataset
should be filtered to return only data for that cohort, the outputs being
used, inputs (dosing, infusions, etc) for this cohort, etc.

The following slides will describe the fields in cohort and their format. For
detailed information and examples see the help for
system_define_cohort.

(Slide 120/124)

Controlling scripts with cfg → Titration Options

Defining Cohorts (Contd.)
General options

cohort.name- This is a required field that contains a string that must
begin with a letter and can contain letters, numbers and _.

cohort.dataset- Name of the data set defined using
system_load_dataset.

cohort.cp- This is a data structure with fields that are parameter names
and values that these parameters should be set for this specific cohort.

cohort.cf- This is a filter that is applied to the dataset to return the
subset that applies to the current cohort. This is a data structure where
the fields are the column names of the dataset. The values represent the
values in the record that must be true to be included. If multiple fields
are provided they will be ’anded’ together to extract this subset.

(Slide 121/124)

Controlling scripts with cfg → Titration Options

Defining Cohorts (Contd.)
Inputs
cohort.inputs- There is a field here for each type of input (bolus,
infusion_rates, and covariates). Each of these inputs has the same format. A
field for the input name and under that input name there is an TIME and AMT
fields. These are vectors of times and amounts with the units described in the
system.txt file. It is only necessary to specify the bolus and infusion
rates that are nonzero for this cohort and the covariate that is different
from the parameter set for this cohort.

Bolus
cohort.inputs.bolus.STATE.TIME = [];
cohort.inputs.bolus.STATE.AMT = [];
Infusion Rates

cohort.inputs.infusion_rates.RNAME.TIME = [];
cohort.inputs.infusion_rates.RNAME.AMT = [];

Covariates
cohort.inputs.covariates.CNAME.TIME = [];
cohort.inputs.covariates.CNAME.AMT = [];

(Slide 122/124)

Controlling scripts with cfg → Titration Options

Defining Cohorts (Contd.)
Outputs
cohort.outputs- There is a field for each output here. This field, like the name
for the cohort, should begin with a letter and can contain only letters, numbers
and _. For each output there is an obs field that describes the columns in the
dataset to be used that contain both the independent variable (time) and the
dependent variable (output). If there is missing data, an optional field of
missing can be specified and the value used to indicate a missing observation
can be specified (e.g. -1).

There is also a field called model which contains the timescale from the model
which matches the time in the dataset. It also contains a value field that maps
the model output to the observations in the dataset.

cohort.options- This field contains optional information used to customize
how this cohort is simulated and what is returned.

cohort.output_times- By default, the simulation output times will be used. If
it is necessary to have finer control over this, a different vector of times can be
specified.

(Slide 123/124)

Controlling scripts with cfg → Titration Options

System Information

When modfying the system, it’s possible to loose track of the changes that
have been made. To see the current state of the system, the function
system_view can be used:

system_view(cfg)

By default this will show all of the information about the system. It’s also
possible to specify certain components using the second argument
(’parameters’, ’bolus’, ’infusion_rates’, ’covariates’, etc).

(Slide 124/124)

	Model Development
	Getting Started
	Big picture and how it all fits together
	Brief guide to system.txt files

	Constructing your system in system.txt
	System parameters
	Secondary parameters
	Differential Equations
	Process-centric description
	Non-zero initial conditions
	Bolus Inputs
	Infusion Rates
	Covariates
	Generic vs. language specific functions
	Timescales

	Other aspects & and extensions
	Multiple parameterizations within the same file
	Extending mathematical sets to the system.txt framework
	Altering the structure and parameters within a simulation
	Defining datasets, variance parameters, & IIV
	Inter-Individual Variability
	Shiny Model Interface

	Software Targets
	Matlab workflow
	R workflow
	Adapt
	Berkeley-Madonna
	mrgsolve
	NONMEM

	Matlab Workflow
	Implementation details
	Analysis template
	Location and overview of custom functions

	Running simulations
	Default analysis script
	Simulation output:accessing different components
	Sampling subjects and simulating with IIV

	Parameter Estimation
	Estimation Overview
	Front Matter
	Loading Data Files
	Defining Cohorts
	Estimating Parameters

	Controlling scripts with cfg
	General Operations
	Setting Options
	Simulation Options
	Ode Solver Options
	IIV Simulation Options
	Estimation Options
	Titration Options

